Wakefield Acceleration in Dielectric Structures

J.B. Rosenzweig

UCLA Dept. of Physics and Astronomy

The Physics and Applications of High Brightness Electron Beams

Maui, November 16, 2009
Scaling the accelerator in size

- **Lasers** produce copious power (\(\sim J, >TW\))
 - Scale in size by 4 orders of magnitude
 - \(\lambda < 1 \mu m\) gives *challenges* in beam dynamics
 - Reinvent resonant structure using *dielectric* (E163, UCLA)

- To jump to GV/m, only *need* mm-THz
 - Must have new source…
Promising paradigm for high field accelerators: wakefields

- Coherent radiation from bunched, $\nu \sim c, e^-$ beam
 - Any impedance environment
 - Powers more exotic schemes: plasma, dielectrics
- Non-resonant, short pulse operation possible
- Intense beams needed by other fields
 - X-ray FEL
 - X-rays from Compton scattering
 - THz sources
High gradients, high frequency, EM power from wakefields: CLIC @ CERN

CLIC drive beam extraction structure

CLIC wakefield-powered resonant scheme

CLIC 30 GHz, 150 MV/m structures

(concept borrowed from W. Gai…)

Initial Electron Pulse
4.6 A - 2 GeV - 16μs

Delay Line
39 m

Drive Beam Accelerator
Accelerating Structures 937 MHz

Combiner Ring
78 m

Main Beam Accelerator Units

Transfer Structures - 30 GHz

D. B. Decelerator Unit
The dielectric wakefield accelerator

- High accelerating gradients: GV/m level
 - Dielectric based, low loss, short pulse
 - Higher gradient than optical? Different breakdown mechanism
 - No charged particles in beam path…
- Use wakefield collider schemes
 - CLIC style modular system
 - *Afterburner* possibility for existing accelerators
- Spin-offs
 - High power THz radiation source
The "wake" mechanism: coherent Cerenkov radiation

Cerenkov angle

Radiation

Maximum frequency favored, minimum bunch length
Dielectric Wakefield Accelerator

Overview

- Electron bunch ($\beta \approx 1$) drives *Cerenkov wake* in cylindrical dielectric structure
- Dependent on structure properties
- Multimode excitation
- Wakefields accelerate trailing bunch
- Mode wavelengths (quasi-optical)

Design Parameters

- Peak decelerating field
- Transformer ratio (unshaped beam)

Ez on-axis, OOPIC
Experimental History
Argonne / BNL experiments

- Proof-of-principle experiments
 (W. Gai, et al.)
 - ANL AATF
- Mode superposition
 - ANL AWA, BNL
- Transformer ratio improvement
 (J. Power, et al.)
 - Beam shaping
- Tunable permittivity structures
 - For external feeding
 (A. Kanareykin, et al.)

Gradients limited to <50 MV/m by available beam
T-481: Test-beam exploration of breakdown threshold

- Go beyond pioneering work at ANL
 - Much shorter pulses, small radial size
 - Higher gradients...
- Leverage off E167
- Goal: breakdown studies
 - Al-clad fused SiO$_2$ fibers
 - ID 100/200 μm, OD 325 μm, $L=1$ cm
 - Avalanche v. tunneling ionization
 - **Beam parameters indicate $E_z \leq 11$ GV/m can be excited**
 - 3 nC, $\sigma_z \geq 20$ μm, 28.5 GeV
- 48 hr FFTB run
Breakdown Limits on Gigavolt-per-Meter Electron-Beam-Driven Wakefields in Dielectric Structures

M. C. Thompson,1,2,* H. Badakov,1 A. M. Cook,1 J. B. Rosenzweig,1 R. Tikhoplov,1 G. Travish,1 I. Blumenfeld,3 M. J. Hogan,3 R. Ischebeck,3 N. Kirby,3 R. Siemann,3 D. Walz,3 P. Muggli,4 A. Scott,5 and R. B. Yoder6

1Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
2Lawrence Livermore National Laboratory, Livermore, California 94551, USA
3Stanford Linear Accelerator Center, Menlo Park, California 94025, USA
4University of Southern California, Los Angeles, California 90089, USA
5University of California, Santa Barbara, California 93106, USA
6Manhattan College, Riverdale, New York 10471, USA

(Received 20 January 2008; published 27 May 2008)

First measurements of the breakdown threshold in a dielectric subjected to GV/m wakefields produced by short (30–330 fs), 28.5 GeV electron bunches have been made. Fused silica tubes of 100 µm inner diameter were exposed to a range of bunch lengths, allowing surface dielectric fields up to 27 GV/m to be generated. The onset of breakdown, detected through light emission from the tube ends, is observed to occur when the peak electric field at the dielectric surface reaches 13.8 ± 0.7 GV/m. The correlation of structure damage to beam-induced breakdown is established using an array of postexposure inspection techniques.
View end of dielectric tube;
frames sorted by increasing peak current
T-481: Inspection of Structure Damage

Damage consistent with beam-induced discharge

Aluminum vaporized from pulsed heating!

Laser transmission test

Bisected fiber

ultrashort bunch

longer bunch
OOPIC Simulation Studies

- Parametric scans for design
- Heuristic model benchmarking
- Show pulse duration in multimode excitation... hint at mechanism
- **Determine field levels in experiment: breakdown**
 - Gives breakdown limit of 5.5 GV/m deceleration field

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric inner diameter ($2a$)</td>
<td>100 µm</td>
</tr>
<tr>
<td>Dielectric outer diameter ($2b$)</td>
<td>324 µm</td>
</tr>
<tr>
<td>Dielectric relative permittivity (ε)</td>
<td>~3</td>
</tr>
<tr>
<td>Number of e^- per bunch (N_b)</td>
<td>1.4×10^{10}</td>
</tr>
<tr>
<td>RMS bunch length (σ_z)</td>
<td>100 - 10 µm</td>
</tr>
<tr>
<td>RMS bunch radius (σ_r)</td>
<td>10 µm</td>
</tr>
<tr>
<td>Beam energy</td>
<td>28.5 GeV</td>
</tr>
<tr>
<td>Maximum radial field at dielectric surface</td>
<td>27 GV/m</td>
</tr>
<tr>
<td>Maximum decelerating field (vacuum)</td>
<td>11 GV/m</td>
</tr>
<tr>
<td>Maximum accelerating field (vacuum)</td>
<td>16 GV/m</td>
</tr>
</tbody>
</table>
E169 Collaboration

H. Badakov$^\alpha$, M. Berry$^\beta$, I. Blumenfeld$^\beta$, A. Cook$^\alpha$, F.-J. Decker$^\beta$, M. Hogan$^\beta$, R. Ischebecker$^\beta$, R. Iverson$^\beta$, A. Kanareykin$^\varepsilon$, N. Kirby$^\beta$, P. Muggli$^\gamma$, J.B. Rosenzweig$^\alpha$, R. Siemann$^\beta$, M.C. Thompson$^\delta$, R. Tikhoplav$^\alpha$, G. Travish$^\alpha$, R. Yoder$^\zeta$, D. Walz$^\beta$

$^\alpha$Department of Physics and Astronomy, University of California, Los Angeles
$^\beta$Stanford Linear Accelerator Center
$^\gamma$University of Southern California
$^\delta$Lawrence Livermore National Laboratory
$^\varepsilon$Manhattanville College
$^\zeta$Euclid TechLabs, LLC

Collaboration spokespersons
E-169 Motivation

- Take advantage of unique experimental opportunity at SLAC
 - FACET: ultra-short intense beams
 - Advanced accelerators for high energy frontier
 - Plasma and dielectric wakefields 1st in line
- Extend successful T-481 investigations
 - Multi-GV/m dielectric wakes
 - Complete studies of transformational technique
E169 at FACET: overview

- Research GV/m acceleration scheme in DWA
- **Goals**
 - Explore breakdown issues in detail
 - Determine usable field envelope
 - Coherent Cerenkov radiation measurements
 - Explore alternate materials
 - Explore alternate designs and cladding
 - Radial and longitudinal periodicity…
 - Varying tube dimensions
 - Impedance change
 - Breakdown dependence on wake pulse length
- Approved experiment (EPAC, Jan. 2007)
- Awaits FACET construction

Already explored at UCLA Neptune
Observation of THz Coherent Cerenkov Wakefields @ Neptune

- Chicane-compressed (200 μm) 0.3 nC beam
 - Focused with PMQ array to $\sigma_r \sim 100$ μm ($a = 250$ μm)
- Single mode operation
 - Two tubes, different b, THz frequencies
- Horn-launched quasi-optical transport
- Autocorrelation in Michelson interferometer

![Measured Power Spectrum](image)
E-169: High-gradient Acceleration
Goals in 3 Phases

• Phase 1: Complete breakdown study (when does E169->E168!)
 ✓ explore \((a, b, \sigma_z)\) parameter space
 ✓ Alternate cladding
 ✓ Alternate materials (e.g. CVD diamond)
 ✓ Explore group velocity effect

• Coherent Cerenkov (CCR) measurement
 ✓ Total energy gives field measure
 ✓ Harmonics are sensitive \(\sigma_z\) diagnostic

<table>
<thead>
<tr>
<th>(\sigma_z)</th>
<th>(\geq 20 \mu m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_r)</td>
<td>(< 10 \mu m)</td>
</tr>
<tr>
<td>(U)</td>
<td>25 GeV</td>
</tr>
<tr>
<td>(Q)</td>
<td>3 - 5 nC</td>
</tr>
</tbody>
</table>

FACET beam parameters for E169: high gradient case
E-169 at FACET: Phase 2 & 3

- Phase 2: Observe acceleration
 - 10-33 cm tube length
 - longer bunch, acceleration of tail
 - “moderate” gradient, 1-3 GV/m
 - single mode operation

- Phase 3: Scale to 1 m length
 - Alignment, transverse wakes, BBU
 - Group velocity & EM exposure

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_z</td>
<td>50-150 µm</td>
</tr>
<tr>
<td>σ_r</td>
<td>< 10 µm</td>
</tr>
<tr>
<td>E_b</td>
<td>25 GeV</td>
</tr>
<tr>
<td>Q</td>
<td>3 - 5 nC</td>
</tr>
</tbody>
</table>

FACET beam parameters for E169: acceleration case

* Longitudinal E-field

Momentum distribution after 33 cm (OOPIC)
Experimental Issues: Alternate DWA design, cladding, materials

- Aluminum cladding in T-481
 - Vaporized at moderate wake amplitudes
 - Low vaporization threshold; low pressure and thermal conductivity of environment

- Dielectric cladding
 - Lower refractive index provides internal reflection
 - Low power loss, damage resistant

- Bragg fiber?
 - Low HOM

- Alternate dielectric: CVD diamond
 - Ultra-high breakdown threshold
 - Doping gives low SEC
 - First structures from Euclid Tech.
Control of group velocity with periodic structure

- For *multiple pulse beam loaded operation* in LC, may need $lowv_g$

- Low charge gives smaller, shorter beams
 - Can even replace large Q driver
- Use periodic DWA structure in $\sim \pi$-mode

Example: SiO$_2$-diamond structure
Analytical and simulation approach to zero VG structure

- Write matrix treatment of Ez and its derivative
- Evaluate through period, make phase advance $\mu = \pi$
- Check, optimize with OOPIC
Initial multi-pulse experiment: uniform SiO$_2$ DWA at BNL ATF

- Exploit Muggli’s pulse train slicing technique
 - 400 μm spacing, micro-Q=25 pC, $\sigma_z=80$ μm
 - DWA dimensions: $a=100$ μm, $b=150$ μm
Alternate geometry: slab

- Slab geometry suppresses transverse wakes*
 - Also connects to optical case
- Price: reduced wakefield
- Interesting tests at FACET
 - Slab example, >600 MV/m

Alternate species: e+

- Positrons have different issues
- Polarity of electric field pulls electrons out of material
 - Highest radial electric at driver
- Breakdown could be enhanced
 - Fundamental physics issue
- Unique opportunity at FACET
Conclusions

- Very promising technical approach in DWA
 - Physics surprisingly forgiving thus far
 - Looks like an accelerator!
- FACET and ATF provide critical test-beds
- Need to explore more:
 - Breakdown, materials
 - Advanced geometries